
Functional Analysis

Bartosz Kwa±niewski

Faculty of Mathematics, University of Biaªystok

Lecture 5

Equivalence of norms.

The space of bounded operators.

math.uwb.edu.pl/∼zaf/kwasniewski/teaching

1 / 10



Equivalence of norms

Let us consider two norms ‖ · ‖1 and ‖ · ‖2 on the linear space X .

Def. The norm ‖ · ‖1 is stronger than the norm ‖ · ‖2 if

∃c>0 ∀x∈X ‖x‖2 ¬ c‖x‖1.

Lem. The following conditions are equivalent:

(1) ‖ · ‖1 is stronger than ‖ · ‖2
(2) convergence in ‖ · ‖1 implies convergence in ‖ · ‖2
(3) the topology induced by ‖ · ‖1 is stronger (larger) than the

topology induced by ‖ · ‖2.

Proof: The norm ‖ · ‖1 is stronger than ‖ · ‖2 ⇐⇒
id : (X , ‖ · ‖1)→ (X , ‖ · ‖2) is a bounded operator

Thm⇐⇒
the map id : (X , ‖ · ‖1)→ (X , ‖ · ‖2) is continuous

(Heine's criterion) ⇐⇒
⇐⇒ (topological de�nition)
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Def. The norms ‖ · ‖1 and ‖ · ‖2 are equivalent if the norm ‖ · ‖1
is both stronger and weaker than ‖ · ‖2, that is, if
∃c1,c2>0 ∀x∈X ‖x‖2 ¬ c1‖x‖1 oraz ‖x‖1 ¬ c2‖x‖2.

Prop. The following conditions are equivalent:

(1) the norms ‖ · ‖1 and ‖ · ‖2 are equivalent
(2) convergence in ‖ · ‖1 is equivalent to convergence in ‖ · ‖2
(3) topologies induced by ‖ · ‖1 and ‖ · ‖2 are equal.

Moreover, if the norms are equivalent, then,

(X , ‖ · ‖1) is a Banach space⇐⇒ (X , ‖ · ‖2) is a Banach space

Proof: The equivalence of conditions (1)-(3) follows from lem.

If ‖ · ‖1 and‖ · ‖2 are equivalent, then the sequence {xn}∞n=1 ⊆ X is

Cauchy in ‖ · ‖1 if and only if it is Cauchy in ‖ · ‖2, because
‖xn − xm‖2 ¬ c1‖xn − xm‖1 and ‖xn − xm‖1 ¬ c2‖xn − xm‖2.

Hence equivalence of convergence yields equivalence of completeness �3 / 10



Exm. On the space X = C [0, 1] the following norms

‖x‖∞ := max
t∈[0,1]

|x(t)|, ‖x‖p :=

(∫ 1

0

|x(t)|p dt
)1/p

, p ∈ [1,∞)

are not equivalent. Indeed, take xn(t) = tn. Then

‖xn‖pp =
∫ 1

0
tpn dt = 1

pn+1
→ 0, that is xn

‖·‖p−→ 0. But {xn}∞n=1 is

not convergent in ‖ · ‖∞ (is not uniformly convergent). Hence
‖ · ‖p is not stronger, then ‖ · ‖. In fact,

‖x‖p =

(∫ 1

0

|x(t)|p dt
)1/p

¬
(∫ 1

0

‖x‖p∞ dt

)1/p

= ‖x‖∞

Hence ‖ · ‖∞ is strictly stronger than ‖ · ‖p.

Uniform convergence implies convergence in Lp, but not vice versa

Ex. For p < p′, ‖ · ‖p′ is strictly stronger, then ‖ · ‖p
(Hint: Consider xn(t) = ( 1

t
)
1

p 1[ 1
n
,1] + n

1

p 1[0, 1
n
) and use Hölder's ineqaulity.)
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Exm. In the space X = Fn the norms

‖x‖∞ := max
k=1,...,n

|x(k)|, ‖x‖p :=

(
n∑

k=1

|x(k)|p
)1/p

, p ∈ [1,∞)

are equivalent, because ‖x‖∞ ¬ ‖x‖p and ‖x‖p ¬ n‖x‖∞.

Theorem.

In a �nite-dimensional space all norms are equivalent.

Proof: Pick linearly independent e1, ..., en ∈ X such that

∀x∈X ∃x(1),...,x(n)∈F x =
n∑

k=1

x(k)ek . Then X ∼= Fn, where

x 7→ (x(1), ..., x(n)). Let us de�ne a norm on X by the formula

‖x‖∞ := max
k=1,...,n

|x(k)|, where x =
n∑

k=1

x(k)ek .

It su�ces to show that any norm ‖ · ‖ on X is equivalent to ‖ · ‖∞
(since the equivalence of norms is an equivalence relation, and in
particular a transitive relation). To this end, note that 5 / 10



‖x‖ = ‖
n∑

k=1

x(k)ek‖ ¬
n∑

k=1

‖x(k)ek‖ =
n∑

k=1

|x(k)|‖ek‖ ¬ ‖x‖∞
n∑

k=1

‖ek‖.

So ‖x‖ ¬ c‖x‖∞ for c :=
n∑

k=1

‖ek‖. Thus ‖ · ‖∞ is stronger than ‖ · ‖.

Assume ad absurdum that ‖ · ‖ is not stronger than ‖ · ‖∞. Then for

any n ∈ N there is xn ∈ X such that ‖xn‖∞ > n‖xn‖. Putting
yn := xn

‖xn‖∞ we get a sequence converging to 0 in ‖ · ‖, as

‖yn‖ = ‖xn‖
‖xn‖∞ <

1
n −→ 0.

Hence yn
‖·‖−→ 0. On the other hand, ‖yn‖∞ = 1, and so {yn}∞n=1 is

contained in the unit sphere in norm ‖ · ‖∞, which is compact (‖ · ‖∞
is equivalent to the euclidean norm ‖ · ‖2, see Exm). Hence there is a

subsequence {ynk}∞n=1 convergent in ‖ · ‖∞ to some y ∈ X with

‖y‖∞ = limk→∞ ‖ynk‖∞ = 1. In particular, y 6= 0. Since ‖ · ‖∞ is

stronger than ‖ · ‖, we get ynk
‖·‖−→ y 6= 0 becasue yn

‖·‖−→ 0. �
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Cor1. Every �nite-dimensional normed space is complete
(dim(X ) = n <∞ =⇒ X is a Banach space).

Proof: The norm on X ∼= Fn is equivalent to the Euclidean norm.
Since the Euclidean space Fn is complete, X is complete. �

Cor2. A �nite-dimensional subspace of normed space is closed.

Proof: Completeness implies closedness. (Lec.1) �

Cor3. Any linear operator de�ned on a �nite-dimensional space is
automatically bounded (continuous).

Proof: Let T : X → Y linear and X ∼= Fn. Since on X all norms
are equivalent, we can assume that ‖x‖ =

∑n
i=1 |x(k)|, where

x =
∑n

k=1 x(k)ek . Then

‖Tx‖ = ‖
n∑

k=1

x(k)Tek‖ ¬
n∑

k=1

|x(k)|‖Tek‖ ¬ C · ‖x‖

where C := maxk=1,...,n ‖Tek‖. Hence T is bounded. � 7 / 10



The space of bounded operators

Let X and Y be normed spaces.

The space of bounded operators from X to Y

B(X ,Y ) := {T : X → Y bounded linear}

is a normed space over F = R,C, with operations

(T + S)x := Tx + Sx , (λT )x := λTx
(

pointwise
operations!

)
and the operator norm ‖T‖ = sup

‖x‖=1

‖Tx‖.

Theorem

Y is a Banach space ⇐⇒ B(X ,Y ) is a Banach space

Dowód: �⇐=� we need the Hahn-Banach Theorem (Lec.11)
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�=⇒� Let {Tn}∞n=1 ⊆ B(X ,Y ) be Cauchy. Doe each x ∈ X

‖Tnx − Tmx‖ ¬ ‖Tn − Tm‖‖x‖ → 0.

Hence the sequence {Tnx}∞n=1 ⊆ Y is Cauchy in Y , hence it
converges (as Y is complete). We put Tx := limn→∞ Tnx . In this
way we get a linear operator T : X → Y (limes is linear!). Then

‖(T − Tn)x‖ = lim
m→∞

‖(Tm − Tn)x‖

¬ lim sup
m→∞

‖Tm − Tn‖‖x‖ ¬ sup
mn
‖Tm − Tn‖‖x‖.

Therefore

‖T − Tn‖ ¬ sup
mn
‖Tm − Tn‖ −→ 0, when n→∞.

Thus {Tn}∞n=1 converges in norm to T . In particular, since
Tn ∈ B(X ,Y ) and T − Tn ∈ B(X ,Y ) (for large n), the operator
T = T − Tn + Tn ∈ B(X ,Y ) is bounded.

Hence {Tn}∞n=1 converges in the space B(X ,Y ). �
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Dual space

The �eld of scalars Y := F is a Banach space.

Def.

Let X be a normed space. We call the Banach space B(X ,F) the
dual space to X and we denote it by X ∗. Elements of
X ∗ = B(X ,F) are called bounded linear functionals on X .

Ex. Integration is an example of a bounded linear functional

L1(µ) 3 x 7−→ f (x) :=
∫
x dµ ∈ F.

Rem.

The main motivation for considering the dual space X ∗ is that it
allows us to de�ne the bilinear form (sometimes called pairing)

X ∗ × X 3 (f , x) 7−→ 〈f , x〉 := f (x) ∈ F,

which imitates an inner product on X .
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