Functional Analysis

Bartosz Kwaśniewski

Faculty of Mathematics, University of Białystok

Lecture 5

Equivalence of norms. The space of bounded operators.

math uwb edu pl/ \sim zaf/kwasniewski/teaching

Equivalence of norms

Let us consider two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ on the linear space X.

Def. The norm
$$\|\cdot\|_1$$
 is stronger than the norm $\|\cdot\|_2$ if
 $\exists_{c>0} \forall_{x \in X} \quad \|x\|_2 \leq c \|x\|_1.$

Lem. The following conditions are equivalent:

$$\| \cdot \|_1 \text{ is stronger than } \| \cdot \|_2$$

- $\textbf{O} \quad \text{convergence in } \|\cdot\|_1 \text{ implies convergence in } \|\cdot\|_2$
- the topology induced by $\|\cdot\|_1$ is stronger (larger) than the topology induced by $\|\cdot\|_2$.

Proof: ① The norm $\|\cdot\|_1$ is stronger than $\|\cdot\|_2 \iff$ $id: (X, \|\cdot\|_1) \to (X, \|\cdot\|_2)$ is a bounded operator $\stackrel{\mathsf{Thm}}{\iff}$ the map $id: (X, \|\cdot\|_1) \to (X, \|\cdot\|_2)$ is continuous (Heine's criterion)

Def. The norms $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent if the norm $\|\cdot\|_1$ is both stronger and weaker than $\|\cdot\|_2$, that is, if $\exists_{c_1,c_2>0} \forall_{x\in X} \quad \|x\|_2 \leq c_1 \|x\|_1 \quad \text{oraz} \quad \|x\|_1 \leq c_2 \|x\|_2.$

Prop. The following conditions are equivalent:

- the norms $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent
- convergence in $\|\cdot\|_1$ is equivalent to convergence in $\|\cdot\|_2$ 2
- topologies induced by $\|\cdot\|_1$ and $\|\cdot\|_2$ are equal. 3

Moreover, if the norms are equivalent, then,

 $(X, \|\cdot\|_1)$ is a Banach space $\iff (X, \|\cdot\|_2)$ is a Banach space

Proof: The equivalence of conditions (1)-(3) follows from lem. If $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent, then the sequence $\{x_n\}_{n=1}^{\infty} \subseteq X$ is Cauchy in $\|\cdot\|_1$ if and only if it is Cauchy in $\|\cdot\|_2$, because

 $||x_n - x_m||_2 \leq c_1 ||x_n - x_m||_1$ and $||x_n - x_m||_1 \leq c_2 ||x_n - x_m||_2$. Hence equivalence of convergence yields equivalence of completeness **E**/10 **Exm.** On the space X = C[0, 1] the following norms

$$\|x\|_{\infty} := \max_{t \in [0,1]} |x(t)|, \quad \|x\|_p := \left(\int_0^1 |x(t)|^p dt\right)^{1/p}, \quad p \in [1,\infty)$$

are not equivalent. Indeed, take $x_n(t) = t^n$. Then

 $||x_n||_p^p = \int_0^1 t^{pn} dt = \frac{1}{pn+1} \to 0$, that is $x_n \xrightarrow{\|\cdot\|_p} 0$. But $\{x_n\}_{n=1}^\infty$ is not convergent in $\|\cdot\|_\infty$ (is not uniformly convergent). Hence $\|\cdot\|_p$ is not stronger, then $\|\cdot\|$. In fact,

$$\|x\|_{p} = \left(\int_{0}^{1} |x(t)|^{p} dt\right)^{1/p} \leq \left(\int_{0}^{1} \|x\|_{\infty}^{p} dt\right)^{1/p} = \|x\|_{\infty}$$

Hence $\|\cdot\|_{\infty}$ is strictly stronger than $\|\cdot\|_{p}$.

Uniform convergence implies convergence in L^p , but not vice versa **Ex.** For p < p', $\|\cdot\|_{p'}$ is strictly stronger, then $\|\cdot\|_p$ (Hint: Consider $x_n(t) = (\frac{1}{t})^{\frac{1}{p}} 1_{[\frac{1}{n},1]} + n^{\frac{1}{p}} 1_{[0,\frac{1}{n})}$ and use Hölder's inequality.) **Exm.** In the space $X = \mathbb{F}^n$ the norms

$$\|x\|_{\infty} := \max_{k=1,...,n} |x(k)|, \qquad \|x\|_{p} := \left(\sum_{k=1}^{n} |x(k)|^{p}\right)^{1/p}, \quad p \in [1,\infty)$$

are equivalent, because $\|x\|_{\infty} \leqslant \|x\|_{p}$ and $\|x\|_{p} \leqslant n \|x\|_{\infty}$.

Theorem.

In a finite-dimensional space all norms are equivalent.

Proof: Pick linearly independent $e_1, ..., e_n \in X$ such that $\forall_{x \in X} \exists_{x(1),...,x(n) \in \mathbb{F}} x = \sum_{k=1}^n x(k)e_k$. Then $X \cong \mathbb{F}^n$, where $x \mapsto (x(1), ..., x(n))$. Let us define a norm on X by the formula $\|x\|_{\infty} := \max_{k=1,...,n} |x(k)|$, where $x = \sum_{k=1}^n x(k)e_k$.

It suffices to show that any norm $\|\cdot\|$ on X is equivalent to $\|\cdot\|_{\infty}$ (since the equivalence of norms is an equivalence relation, and in particular a transitive relation). To this end, note that $\frac{5}{10}$

$$||x|| = ||\sum_{k=1}^{n} x(k)e_k|| \leq \sum_{k=1}^{n} ||x(k)e_k|| = \sum_{k=1}^{n} |x(k)|||e_k|| \leq ||x||_{\infty} \sum_{k=1}^{n} ||e_k||.$$

So $||x|| \leq c ||x||_{\infty}$ for $c := \sum_{k=1}^{n} ||e_k||$. Thus $||\cdot||_{\infty}$ is stronger than $||\cdot||$.

Assume ad absurdum that $\|\cdot\|$ is not stronger than $\|\cdot\|_{\infty}$. Then for any $n \in \mathbb{N}$ there is $x_n \in X$ such that $\|x_n\|_{\infty} > n\|x_n\|$. Putting $y_n := \frac{x_n}{\|x_n\|_{\infty}}$ we get a sequence converging to 0 in $\|\cdot\|$, as

$$\|y_n\| = \frac{\|x_n\|}{\|x_n\|_{\infty}} < \frac{1}{n} \longrightarrow 0.$$

Hence $y_n \xrightarrow{\|\cdot\|} 0$. On the other hand, $\|y_n\|_{\infty} = 1$, and so $\{y_n\}_{n=1}^{\infty}$ is contained in the unit sphere in norm $\|\cdot\|_{\infty}$, which is **compact** $(\|\cdot\|_{\infty})$ is equivalent to the euclidean norm $\|\cdot\|_2$, see **Exm**). Hence there is a subsequence $\{y_{n_k}\}_{n=1}^{\infty}$ convergent in $\|\cdot\|_{\infty}$ some $y \in X$ with $\|y\|_{\infty} = \lim_{k \to \infty} \|y_{n_k}\|_{\infty} = 1$. In particular $\neq 0$. Since $\|\cdot\|_{\infty}$ is stronger than $\|\cdot\|$, we get $y_{n_k} \xrightarrow{\|\cdot\|} y \neq 0$ becasue $y_n \xrightarrow{\|\cdot\|} 0$.

Cor1. Every finite-dimensional normed space is complete $(\dim(X) = n < \infty \implies X \text{ is a Banach space}).$

Proof: The norm on $X \cong \mathbb{F}^n$ is equivalent to the Euclidean norm. Since the Euclidean space \mathbb{F}^n is complete, X is complete.

Cor2. A finite-dimensional subspace of normed space is closed.

Proof: Completeness implies closedness. (Lec.1)

Cor3. Any linear operator defined on a finite-dimensional space is automatically bounded (continuous).

Proof: Let $T : X \to Y$ linear and $X \cong \mathbb{F}^n$. Since on X all norms are equivalent, we can assume that $||x|| = \sum_{i=1}^n |x(k)|$, where $x = \sum_{k=1}^n x(k)e_k$. Then $||Tx|| = ||\sum_{k=1}^n x(k)Te_k|| \le \sum_{k=1}^n |x(k)|||Te_k|| \le C \cdot ||x||$ where $C := \max_{k=1,...,n} ||Te_k||$. Hence T is bounded.

The space of bounded operators

Let X and Y be normed spaces.

The space of bounded operators from X to Y

 $B(X, Y) := \{T : X \to Y \text{ bounded linear}\}$

is a normed space over $\mathbb{F}=\mathbb{R},\mathbb{C}$, with operations

(T+S)x := Tx + Sx, $(\lambda T)x := \lambda Tx$ (pointwise operations!)

and the operator norm $||T|| = \sup_{||x||=1} ||Tx||$.

Theorem

Y is a Banach space $\iff B(X, Y)$ is a Banach space

Dowód: "⇐" we need the Hahn-Banach Theorem (Lec.11)

" \Longrightarrow " Let $\{T_n\}_{n=1}^\infty \subseteq B(X,Y)$ be Cauchy. Doe each $x \in X$

$$\|T_nx-T_mx\|\leqslant \|T_n-T_m\|\|x\|\to 0.$$

Hence the sequence $\{T_n x\}_{n=1}^{\infty} \subseteq Y$ is Cauchy in Y, hence it converges (as Y is complete). We put $Tx := \lim_{n \to \infty} T_n x$. In this way we get a linear operator $T : X \to Y$ (limes is linear!). Then

$$\|(T - T_n)x\| = \lim_{m \to \infty} \|(T_m - T_n)x\|$$

$$\leq \limsup_{m \to \infty} \|T_m - T_n\| \|x\| \leq \sup_{m \geq n} \|T_m - T_n\| \|x\|.$$

Therefore

$$\|T - T_n\| \leq \sup_{m \geq n} \|T_m - T_n\| \longrightarrow 0$$
, when $n \to \infty$.

Thus $\{T_n\}_{n=1}^{\infty}$ converges in norm to T. In particular, since $T_n \in B(X, Y)$ and $T - T_n \in B(X, Y)$ (for large n), the operator $T = T - T_n + T_n \in B(X, Y)$ is bounded.

Hence $\{T_n\}_{n=1}^{\infty}$ converges in the space B(X, Y).

Dual space

The field of scalars $Y := \mathbb{F}$ is a Banach space.

Def.

Let X be a normed space. We call the Banach space $B(X, \mathbb{F})$ the **dual space** to X and we denote it by X^{*}. Elements of $X^* = B(X, \mathbb{F})$ are called bounded linear **functionals** on X.

Ex. Integration is an example of a bounded linear functional $L^1(\mu) \ni x \longmapsto f(x) := \int x \, d\mu \in \mathbb{F}.$

Rem.

The main motivation for considering the dual space X^* is that it allows us to define the bilinear form (sometimes called pairing)

$$X^* \times X \ni (f, x) \longmapsto \langle f, x \rangle := f(x) \in \mathbb{F},$$

which imitates an **inner product** on X.